

FEATURES

1. Compact DIP type SSR that's ideal for AC load control
2. Supports 0.3 A, 0.6 A, 0.9 A and 1.2 A ON-state RMS currents.
3. The 1.2 A type saves space with a DIP 8-pin package. (Competitor only provides a 16-pin type.)

> (mm inch)
4. Only ours handles both 100 and 200

V AC loads
This relay handles both voltages in a single product. It is not necessary for users that use both types to manage separate part numbers.
5. High dielectric strength: 5,000 V AC (between input and output)
6. Two types available: Zero-cross type and Non-zero-cross type

TYPICAL APPLICATIONS

1. Home appliances (air conditioners, microwave ovens, washing machines, personal hygiene systems, refrigerators, fan heaters, inductive heating cooker, and water heaters, etc.)
2. Industrial equipment market.

TYPES

Type	Output rating*		Type	Part No.				Packing quantity		
			Through hole terminal		rface-mount term	minal				
	Repetitive peak OFFstate voltage	ON-state RMS current		Tube packing style		Tape and reel packing style		Tube	Tape and reel	
						Picked from the $1 / 2 / 3 / 4$-pin side	Picked from the 5/6/8-pin side			
$\begin{gathered} \text { AC } \\ \text { type } \end{gathered}$	600 V	0.3 A		Zero-cross	AQH0213	AQH0213A	AQH0213AX	AQH0213AZ	1 tube contains 40 pcs. 1 batch contains 400 pcs.	1,000 pcs.
		0.6 A	AQH1213		AQH1213A	AQH1213AX	AQH1213AZ			
		0.9 A	AQH2213		AQH2213A	AQH2213AX	AQH2213AZ			
		1.2 A	AQH3213		AQH3213A	AQH3213AX	AQH3213AZ			
		0.3 A	Non zero-cross	AQH0223	AQH0223A	AQH0223AX	AQH0223AZ			
		0.6 A		AQH1223	AQH1223A	AQH1223AX	AQH1223AZ			
		0.9 A		AQH2223	AQH2223A	AQH2223AX	AQH2223AZ			
		1.2 A		AQH3223	AQH3223A	AQH3223AX	AQH3223AZ			

*Indicate the repetitive peak OFF-state voltage and ON-state RMS current: peak AC.
Note: For space reasons, the SMD terminal shape indicator " A " and the package type indicator " X " and " Z " are omitted from the seal.

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQH0213 AQH0223	AQH1213	AQH1223	AQH2213	AQH2223	AQH3213	AQH3223	Remarks
Input	LED forward current		I_{F}	50 mA							
	LED reverse voltage		V_{R}	6 V							
	Peak forward current		Ifp	1 A							$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { Duty Ratio }=0.1 \% \\ & \hline \end{aligned}$
Output	Repetitive	k OFF-state votage	V ${ }_{\text {drm }}$	600 V							
	ON-state RMS current		$1 \mathrm{~T}_{\text {(RMS) }}$	0.3 A	0.6 A		0.9 A		1.2 A		
	Non-repetitive surge current		Itsm	3 A	6	A	9				$60 \mathrm{~Hz}, 1$ cycle
I/O isolation voltage			$\mathrm{V}_{\text {iso }}$	5,000 V AC							
Temperature limits		Operating	Topr	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-22^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$							Non-condensing at low temperatures
		Storage	$\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$							

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQH0213	AQH1213	AQH2213	AQH3213	AQH0223	AQH1223	AQH2२23	AQH3223	Condition
Input	LED dropout voltage	Typical	V_{F}	1.18 V								$\mathrm{IF}=10 \mathrm{~mA}$
		Maximum		1.3 V								
	LED reverse current	Typical	IR	-								$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
		Maximum		$10 \mu \mathrm{~A}$								
Output	Peak OFF-state current	Typical	Idrm	-								$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\text {DRM }}=600 \mathrm{~V} \end{aligned}$
		Maximum		$100 \mu \mathrm{~A}$								
	Peak ON-state voltage	Typical	$\mathrm{V}_{\text {TM }}$	-								$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & I_{\text {tм }}=\mathrm{Max} . \end{aligned}$
		Maximum		2.5 V								
	Holding current	Typical	$\mathrm{IH}^{\text {}}$	-								
		Maximum		25 mA								
	Critical rate of rise of OFF-state voltage	Minimum	dv/dt	$200 \mathrm{~V} / \mu \mathrm{s}$								V ${ }_{\text {dra }}=600 \mathrm{~V} \times 1 / \sqrt{2}$
Transfer characteristics	Trigger LED current*	Maximum	Ift	10 mA								$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
	Zero-cross voltage**	Maximum	Vzc	50 V					-			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Turn on time***	Maximum	Ton	$10 \mu \mathrm{~s}$								$\begin{aligned} & \mathrm{I}_{F}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
	I/O isolation resistance	Minimum	Riso	$50 \mathrm{G} \Omega$								500 V DC

Notes: *Recommended LED current Ift: 20 mA
${ }^{* *}$ Applicable part No.: AQH0213, AQH1213, AQH2213 and AQH3213.
***Turn on time

DIMENSIONS

Through hole terminal type

Terminal thickness: 0.25 .010
General tolerance: $\pm 0.1 \pm .004$

Surface mount terminal type

Terminal thickness: 0.25 .010
General tolerance: $\pm 0.1 \pm .004$

PC board pattern (BOTTOM VIEW)

Tolerance: $\pm 0.1 \pm .004$

Recommended mounting pad
(TOP VIEW)

Tolerance: $\pm 0.1 \pm .004$

SCHEMATIC AND WIRING DIAGRAMS
Notes: E_{1} : Power source at input side; $\mathrm{IF}_{\text {: }}$ Trigger LED forward current; VL: Load voltage; IL: Load current;

REFERENCE DATA

1. ON-state RMS current vs. Ambient temperature characteristics
Allowable ambient temperature:
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-22^{\circ} \mathrm{F}$ to $+185^{\circ}$

2. LED dropout voltage vs. Ambient temperature characteristics
LED current: 10 to 50 mA

3. Hold current vs. Ambient temperature characteristics

4. On voltage vs. Ambient temperature characteristics
LED current: 10 mA ; ON current: Max.
Measured portion: between terminals 6 and 8

5. Turn on time vs. LED current characteristics Load voltage: 6 V DC; Load resistance: 100Ω
Measured portion: between terminals 6 and 8

6. Zero-cross voltage vs. Ambient temperature characteristics
LED current: 10 mA

7. Trigger LED current vs. Ambient temperature characteristics
Load voltage: 6 V DC;
Load resistance: 100Ω

8. Repetitive peak OFF-state current vs. Load voltage characteristics
LED current: 0 mA ; Measured portion: between terminals 6 and 8 ; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

CAUTIONS FOR USE

1. For cautions regarding use, please refer to '03-'04 Solid State Relays catalog.

2. The internal IC could be damaged if a short forms between the I/O terminals while the solid state relay is powered.

3. Output spike voltages

1) The figure below shows an ordinary circuit. Please add a snubber circuit or varistor, as noise/surge on the load side could damage the unit or cause malfunctions.

Note) Connection of an external resister, etc., to terminal No. 5 (gate) is not necessary.
2) Even if spike voltages generated at the load are limited with a clamp diode if the circuit wires are long, spike voltages will occur by inductance. Keep wires as short as possible to minimize inductance.
4. Ripple in the input power supply

1) For LED operate current at Emin, maintain min. 10 mA
2) Keep the LED operate current at 50 mA or less at $E_{\text {max }}$.

5. When soldering terminals, keep
soldering time to within 10 s at $260^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F}$ $500^{\circ} \mathrm{F}$

6. Cleaning

The solid state relay forms an optical path by coupling a light-emitting diode (LED) and photodiode via transparent silicon resin.
For this reason, avoid ultrasonic cleansing if at all possible.
We recommend cleaning with an organic solvent. If you cannot avoid using ultrasonic cleansing, please ensure that the following conditions are met, and check beforehand for defects.

- Frequency: 27 to 29 kHz
- Ultrasonic output: No greater than 0.25 W/cm ${ }^{2}$
- Cleaning time: No longer than 30 seconds
- Cleanser used: Asahiklin AK-225
- Other: Submerge in solvent in order to prevent the PCB and elements from being contacted directly by the ultrasonic vibrations.
Note: Applies to unit area ultrasonic output for ultrasonic baths.

7. Soldering

1) When soldering PC board terminals, keep soldering time to within 10 s at $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$.
2) When soldering surface-mount terminals, the following conditions are recommended.
(1) IR (Infrared reflow) soldering method

$\mathrm{T}_{1}=155$ to $165^{\circ} \mathrm{C} 311$ to $329^{\circ} \mathrm{F}$
$\mathrm{T}_{2}=180^{\circ} \mathrm{C} 200^{\circ} \mathrm{C} 356$ to $392^{\circ} \mathrm{F}$
$\mathrm{T}_{3}=245^{\circ} \mathrm{C} 473^{\circ} \mathrm{F}$ or less
$\mathrm{t} 1=120 \mathrm{~s}$ or less
$\mathrm{t} 2=30 \mathrm{~s}$ or less
(2) Vapor phase soldering method

(3) Double wave soldering method

$\mathrm{T}_{1}=155$ to $165^{\circ} \mathrm{C} 311$ to $329^{\circ} \mathrm{F}$
$\mathrm{T}_{2}=260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ or less
$\mathrm{t} 1=60 \mathrm{~s}$ or less
$\mathrm{t} 2+\mathrm{t} 3=5 \mathrm{~s}$ or less
(4) Soldering iron method

Tip temperature: 280 to $300^{\circ} \mathrm{C} 536$ to $572^{\circ} \mathrm{F}$
Wattage: 30 to 60 W
Soldering time: within 5 seconds
(5) Others

Check mounting conditions before using other soldering methods (hot-air, hot plate, pulse heater, etc.)

- The temperature profile indicates the temperature of the soldered terminal on the surface of the PC board. The ambient temperature may increase excessively.
Check the temperature under mounting conditions.
- The conditions for the infrared reflow soldering apply when preheating using the VPS method.

8. The following shows the packaging format

1) Tape and reel
2) Tube

Devices are packaged in a tube so pin No. 1 is on the stopper B side. Observe correct orientation when mounting them on PC boards.
(DIP type)

9. Transportation and storage

1) Extreme vibration during transport will warp the lead or damage the relay. Handle the outer and inner boxes with care.
2) Storage under extreme conditions will cause soldering degradation, external appearance defects, and deterioration of the characteristics. The following storage conditions are recommended:

- Temperature: 0 to $45^{\circ} \mathrm{C} 32$ to $113^{\circ} \mathrm{F}$
- Humidity: Less than 70\% R.H.
- Atomosphere: No harmful gasses such as sulfurous acid gas, minimal dust.

Internet Homepage

- North America : http://www.aromat.com/
- Europe
: http://www.mew-europe.com/

Asia \& others : http://www.nais-e.com/

- (Japanese) : http://www.mac-j.co.jp/
- (Chinese) : http://www.cmew.com.cn/

These materials are printed on ECF pulp.
These materials are printed with earth-friendly vegetable-based (soybean oil) ink.

Matsushita Electric Works, Ltd.
 Automation Controls Company
 ■ Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, Japan
 - Telephone: Japan (81) Osaka (06) 6908-1050
 - Facsimile: Japan (81) Osaka (06) 6908-5781
 http://www.nais-e.com/

